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1. はじめに-界面の親疎水性と流体のすべり 

電気泳動等のコロイド粒子の界面動電現象の問題では，通常，粒子表面

で流体の速度をゼロとする「すべりなし境界条件」が採用される。厳密に

言えば，この境界条件は粒子表面の分子と媒質分子間の分子間引力が強い

親水性粒子の場合には正しいが，表面―媒質間の分子間引力が弱い疎水性

粒子の場合は正しくない（図 1）。粒子表面で流体のすべりがあると粒子は

速く動くからである（図 2）。 

 

 

 

 

2. 大きなすべり粒子の電気泳動（すべり表面上の電気浸透） 

Debye長 1/に比べて十分大きなサイズの粒子の電気泳動移動度を計算する。これは平板上の電気浸透の

問題に等価である。液体媒質 (粘度 , 比誘電率r) に接する帯電平板(ゼータ電位 )がある。平板表面に平行

に電場 Eを加える。平板に垂直に x軸を定め，表面に原点を置く。すべりのある表面における液体速度 u(0)

とすべり摩擦力の間には以下のu(0) =すべり摩擦力の関係がある( はすべり摩擦係数)。 
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 = / はすべり距離である。 = 0はすべりのない親水性表面に， =  は完全な疎水性表面に対応する。

(1)式を用いて，ゼータ電位が低い場合，流速 u(x)に対する Navie-Stokes の式と電位に対する Poisson-

Boltzmannの式を解くと，次式が得られる 1)。 
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は Deby長の逆数，oは真空の誘電率である。図は流速分布 u*(x) ( u(x)=-u(x)/(roE/))を距離 xとすべり

長の関数として与えた(Debye長 1/で割って無次元化)。粒子の電気泳動移動度は次式で与えられる。 
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図 1  粒子表面と水の界面 

親水性表面では表面分子と水分子間

引力が強く，疎水性表面では分子間

引力が弱い。 

 

 
図 2  親水性表面の場合
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すべりのない粒子の移動度(Smoluchowski の式=ro/)の(1+)倍に増大することがわかる。図 4 のように，

流速を表す曲線を粒子内部に延長すると(点線)，u=0になる位置がになる。速度 Uで泳動する粒子表面にお

ける流速勾配は U/(1/+)になり,  すべりがない場合に比べて は(1+)倍に増大する( (3)式)。 

 

3. 滑り粒子の移動度と液滴(水銀)粒子の移動度は等価である 

粘度 の液体媒質中を泳動する球状液滴(水銀)粒子(半径 a, 粘度d)の電気泳動移動度度とすべり距離の疎

水性球状粒子(半径 a)の電気泳動移動度は 以下の置き換えをすれば，互いに等しくなる 1)。 

Λ ⟺  𝜂𝑎/3𝜂𝑑 (4) 

 

4. コロイド粒子の親疎水性と Hamaker定数および Hansen溶解度パラメータ   

分散系の安定性は分散促進因子であるゼータ電位とともに凝

集促進因子である Hamaker定数 Aに支配される。この定数も疎

水性・親水性に関係する。van Ossら 2)による解析結果を図 5に

与えた 2)。また，最近、筆者は武田真一博士との共同研究の結

果、Hamaker定数の正確な値がHansen溶解度パラメータから簡

単に求められることを示した 3,4)。 

 

5. おわりに 

小林博士（筑波大）は疎水性ポリスチレンラテックス粒子の

すべり距離を報告している 5)。すべり粒子の界面動電現象に関す

る筆者の最近の研究は文献 6にまとめてある。  
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図 3  すべり平板周囲の流速分布 u*(x) 

図 4  すべりがあると、粒子表面における流速勾配がU/(1/)から

U/(1/+)に減少して粘性抵抗が減るため、粒子は速く動く。 

 

図 5 コロイド粒子の親疎水性と水中における

Hamaker定数 2)   


