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Abstract A general expression for the electroosmotic flow on
an arbitrarily (i.e., both uniformly and nonuniformly) charged
planar surface under an applied static electric field is derived.
We treat the case in which the applied field is weak so that the
flow is slow enough to obey the Stokes approximation at low
Reynolds numbers and the electric potential is low enough to
obey the linearized Poisson-Boltzmann equation. As exam-
ples, the flow around a sinusoidally charged planar surface
and that around a charged planar surface carrying a square
lattice of point charges are considered. The latter is related to
the discrete-charge effect upon the electroosmotic flow.

Keywords Electroosmotic flow - Arbitrarily charged surface -
Nonuniformly charged surface - Sinusoidally charged surface -
Discrete charge effect

Introduction

Electrokinetic measurements are a powerful tool for charac-
terizing the electric properties of charged surfaces [1-19]. It is
usually assumed that charges are uniformly distributed on the
surface, and accordingly, only a few studies treat
nonuniformly charged surfaces [20-29]. In the case of the
electroosmotic flow on a uniformly charged surface under an
external static electric field applied parallel to the surface, only
the component of the liquid velocity parallel to the applied
electric field has non-zero values and the other two velocity
components are both zero. In the case of a nonuniformly
charged surface, the liquid velocity component parallel to
the applied electric field alters along the surface due to the
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charge distribution on the surface. This inevitably causes a
change in the other velocity components, resulting in their
non-zero values. The purpose of the present paper is to derive
a general expression for the electroosmotic flow distribution
around an arbitrarily (i.e., both uniformly and nonuniformly)
charged planar surface in an electrolyte solution under an ap-
plied static electric field. We set the following conditions: (i)
the applied static electric field is weak so that we may employ
the Stokes approximation for the NavierStokes equation at
low Reynolds numbers. (ii) The planar surface is weakly
charged so that we may employ the linearized Poisson
Boltzmann-equation for the electric potential. As a sim-
ple example of a nonuniformly charged surface, we con-
sider a surface carrying a periodic charge distribution,
which changes only one direction. We also consider a
surface carrying a square lattice of point charges. This
example is related to the discrete-charge effect [30-36]
upon the electroosmotic flow.

Electric potential distribution

We consider an arbitrarily charged planar surface placed in
contact with a liquid containing a general electrolyte com-
posed of NV ionic species with valence z; and bulk concentra-
tion (number density) »;” under an applied static electric field
E. We treat the case where the surface is infinitely large. We
take a Cartesian coordinate system (x, y, z) with its origin on
the surface in the x-y plane (Fig. 1). The z-axis is normal to
the x-y plane. E is oriented parallel to the surface along
the x-axis. We first consider the equilibrium electric
potential distribution ¥(r)=v(x, y, z) at position r=(x,
¥, z) in the electrical diffuse double layer formed around
the surface. We denote the charge density of the surface
by o(s)=o(x, y), where s=(x, y).
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Fig. 1 Electroosmotic flow #(uy, u,, u.) on an arbitrarily charged planar
surface in an applied static electric field E. Cartesian coordinate system
(x, v, z) with its origin on the surface in the x-y plane is used. The z-axis is
normal to the x-y plane. E is oriented parallel to the surface along the x-
axis

We consider the Poisson-Boltzmann equation for 1/(r), viz,

Au(r) = - L) (1)

with

N N

pel(r) - Zzieni(r) = ZZien?oexp (_ Zﬂ]j;g”)) (2)

i=1 i=1

Here, A is the Laplacian operator, p.(r) is the space charge
density resulting from the electrolyte ions, €, is the relative
permittivity of the solution, €, is the permittivity of a vacuum,
ni(r)=n;"exp(—z;ey(r)/kT) is the concentration (number densi-
ty) of ith ionic species at position r, e is the elementary electric
charge, & is Boltzmann’s constant, and 7 is the absolute tem-
perature. We treat the case where the potential ¥(r) is low
enough to allow linearization of Eq. (2) with respect to 1(r).
Then Eq. (2) reduces to

pa(r) = —excor®(r) (3)

where the following electroneutrality condition has been used:

N
>zt =0 (4)
i=1

and
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is the Debye-Hiickel parameter. Equation (1) as combined
with Eq. (3) thus yields

A(r) = K*(r),0 < z < +oo (6)

The boundary conditions for Eq. (6) are

oY(r) __oals)
o |y ae @
Y(r)— 0,%2”) —0as z— + o (8)

In order to solve Eq. (6) subject to Egs. (7) and (8), we
write Y(r) and o(s) by their Fourier transforms,

1 " ik-s
() = (s,2) = @T)J Dl 2)e*sdk (9)
o(s) = (271T)2Ja(k)efk-sark (10)

where 1 (k, z) and G (k) are the Fourier coefficients and k=(k;,
k). We thus obtain

U(k,z) :Jms,z)e*i“ds (11)

5(k) = Jo(s)e_ik'sds (12)

Substituting Egs. (11) and (12) into Eq. (6)—(8), we have

Y (k,z)

o= (K> + K*)(k,2),0 < z < +oo0 (13)

where

k= |kl =\/ki +k (14)

and the boundary conditions (Egs. (7) and (8)) become

opkz)| (k)
0z T g6, (15)
z=0"
i(k,z)—>0, a¢él;’ 2) —0as z— + © (16)
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By solving Eq. (13) subject to Egs. (15) and (16), we obtain

- (k)

Y(k,z) = ——F——=
eeaV I + K2

VK 0 <2< oo (17)

Substitution of Eq. (17) into Eq. (9) yields

_ 1 [ ok
(27‘(‘)25r€0J N

W»(r) s e VR g 0<z <

(18)

Equation (18) is the general expression for the electric po-
tential v(r) at position 7 around an arbitrarily charged planar
surface.

Liquid flow velocity distribution

Now, consider the liquid flow velocity u(u,, u,, u.) around an
arbitrarily charged planar surface under an applied static elec-
tric field E(E, 0, 0) (Fig. 1). We treat the case where the
applied electric field is weak so that we may employ the fol-
lowing Stokes approximation for the Navier-Stokes equation
for the liquid flow velocity u(r) at low Reynolds numbers:

We take the curl of Eq. (24) to eliminate the gradient term
so that we obtain

NV x Au(r)—egox’V x (Y(F)E) =0 (25)

By taking the curl of Eq. (25) again and using Eq. (20), we
obtain

ok E (8
At ) + S (T ) =0 (26)
Auy(r) + e’ EOY(r) -0 (27)
7 n oxoy
) o2 ED"P(r)

We note that the linearized Poisson-Boltzmann equation
(6) gives

nAu(r)=Vp(r)=pg(r)V¥(r) = 0 (19)

divu(r) =0 (20)

where 7 is the viscosity, p(r) is the pressure, W(r) is the electric
potential, and Eq. (20) is the continuity equation for an incom-
pressible fluid. The boundary condition for u(r) is given by

u(r)y=0atz=0 (21)
The electroosmotic velocity U is given by

U = Zlg{)lo u(r) (22)

Since the external electric filed is applied parallel to the
charged surface and the surface is infinitely large, the potential
W(r) may be expressed as the sum of the equilibrium double
layer potential () and the potential —Ex of the applied elec-
tric field E, viz,

U(r) = (r)—Ex (23)

By substituting Eq. (23) into Eq. (19) and replacing pe ()
with ¢(r) on the basis of Eq. (3), we obtain

nAu(r)—V{p(r)—%6r50ﬁ2¢2(r)}— ek Y(r)E =0 (24)

1
D) = 5 A0(0) = A1) 29)
then we obtain from Eqgs. (26)—(29)
N 1 &
au- E (- LT8 =0 o
&k &
AQ{uy(r) + 57;2 aféy’)} =0 (31)
oE &
A2{uz(r) + 67;2 afa(;)} ~0 (32)

The general solution to the biharmonic equation A°®=0 is
given by

1 A 1 .
P(r) = ZJ Ci(k)e* ™ dk 4 7J Cs (k)ze™ ¥ dk

(2n)? (2m)?
(33)

where C;(k) and C,(k) are functions of & to be determined so
as to satisfy the continuity equation (Eq. (20)) and the bound-
ary conditions (Eq. (21)).

@ Springer



hiroy
長方形

hiroy
長方形

hiroy
長方形

hiroy
長方形

hiroy
長方形

hiroy
ハイライト表示


1404

Colloid Polym Sci (2015) 293:1401-1408

After some algebra, we finally obtain

E 1 & k) . (,\/,(z—,z N )
N [EEp— S ik-s +K2z_ _—kz dk
us(r) (27T)2n( ! 6x2)J7\/k2+—,€2€ ; y

£ . a(ky Trm pikes—kz
k dk
+(27r)277J \/m_\—kze
(34)
____E & o(k) g e ke
wlr) = (27)* 2 Oxdy Jﬁe (e e )dk
(35)
E 0 4 :
uz(r) = Wa_[a(k)elk.s (e_mz_e—kz) dk
) nKr? OX
E 0 a(k) ik-s—k.
ox T dk 36
| <2w>2n6xj Rk (36)

Alternative equivalent expressions for u,(r), u,(r), and u.(r)
in terms of v(r) are given below

CasEf . 13r) E 1 & Gk)  gsie
R - e ] Gt o el
E a(k) g
(2702"1-[ VI + k24 K a*

(37)
u (r) _ _6r€0E621/}(r) E 62 J b'\(k) ,,ik~S*kzdk
PV k2 oxdy (2@277,{2 oxdy) \/x2 +K2°
(38)
£oE 0 E 0 [, as
u.(r) = £ 502 i) > —Ja(k)e’k's dk
nKk 0z0x (27‘[’) 77/-@2 Ox

5(k) B9

E 0 J
_l’_ P
@m)nox) \/iZ ¥ k2 +k

Z eik-S*kz dk

Results and discussion

Equations (34)~(36) (or Egs. (37)~(39)) for the liquid flow
velocity distribution around an arbitrarily charge planar sur-
face are the principal results of this paper.

Consider several cases of charge distribution o(s).

(1) Uniform smeared charge density

For the case of continuous distribution of smeared charges
with a uniform density o,, that is,

o(s) = o, = constant (40)

@ Springer

From Egs. (12) and (40), we have

o(k) = UOJ e ®sds = (2m) 0,0 (k) (41)

where (k) is Dirac’s delta function and we have used the
following relation:

5(k) = ! Je*””ds (42)

(2m)?

Substituting Eq. (41) into Egs. (18) and (34)—(36), we have
the following results obtained via a smeared charge model:

vlr) = ) = e 3)
(r) = e) = = 21 (44)
uy(F) = 0, w,(r) = 0 (45)

and from Eq, (22), we obtain the electroosmotic velocity

U= lim u(r) = (—J"E 0,0) (46)

Z—00 nK ’

(i) Sinusoidal charge distribution

Consider a planar surface carrying a sinusoidal charge dis-
tribution, viz,

o(s) = oo{1 + cos(Q-s)} (47)

where Q is a constant vector. From Egs. (12) and (47), we
have

5(K) = (2m)o, | 5(K) + 5 (60K-0) + 5k + @)} (48)

By substituting Eq. (48) into Eq. (18), we obtain

Oo 47 Oo -/ O*+K2z
P(r) = e ™ + cos(Q-s)e 49
() = e+ eseos(@s)e VO (49)
where O= | Q].

Consider the special case of a sinusoidal charge dis-
tribution in the x-direction so that Q-s=Qx. The
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potential distribution (r), which is found to be a func-
tion of x and z, becomes

g, / 2
- cos(Ox)e VO (50)
eeoV k2 + K2

The liquid velocity distribution u(r)=(u(r), u(r), u(r))
can be derived from Egs. (34)—(36) and we found that
u,(r)=0 and that u, and u,, are functions of x and z, given by

g, _
d(wz) = 2 4

ErEok

u(r) = up(x,z) = — . (I-e™)

ooE S 0= K2Qze %
+nH2cos(QX){\/Q2+H2(e o —eQ>—¢—7QJr —Q2+nz}
(51)

u,(r) = 0 (52)

— B ZZ —Qz
() = 1(1.2) = 25 0sin( Q) (ev STy infQZﬁ )
(53)

The expression for the electroosmotic velocity U for O#0
is the same as Eq. (46) for the smeared charge model. Note,
however, that the electroosmotic velocity U for 0=0 is given
by the result for the smeared-charge model for a surface car-
rying a uniform charge density 20,,. Equations (51)—~(53) agree
with Ajdari’s results [22, 23].

It follows from Eqgs. (51)—~(53) that in the limit Q/k— oo,
u(r) tends to the result of the smeared charge model for a
surface carrying a uniform surface charge of density o,
(Egs. (43)—(46)) and that in the opposite limit O/k— 0, u(r)

Smeared-charge model for 20,

u*(0, 2) / (0lx —0)
20 aeemm e
[ L > O/xk=0.01
15} 4
[ 0.1
[ 0.2
1.0} e
: i 0.5
w:#.\\
[ Smeared-charge model for o,
(Q/xk —x)
Kz
n n n 1 n n n 1 n n n 1 n n n 1 n n n 1
0 2 4 6 8 10

Fig.2 Thex component u,(0, z) of the liquid velocity on a surface with a
sinusoidal charge distribution o(x)=0,{1+cos(Qx)} as a function of xz
calculated at x=0 for several values of Q/x, where u,*(0, z)=u,(0, z)/
(—0oE/mk). The dotted and dashed lines, which are obtained via the
smeared charge model, respectively, correspond to uniformly charged
surfaces carrying surface charge densities of o, (Q/k— ) and 20, (Q/
k—0)

tends to the result of the smeared charge model for a surface
carrying a uniform surface charge of density 20, viz,

we(F) = u(x,z) = — ZZKE (1-¢ ™) (54)
uy(r) =0,u,(r) =0 (55)
and

U = Zh_rg u(r) = (— 2;—;E,0,0> (56)

Figures 2 and 3 show some results of the calculation of the
liquid velocity distribution. Figure 2 shows the x component
u,(0, z) of the liquid velocity directed parallel to E in the x-axis
as a function of scaled distance xz from the charged surface
calculated at x=0 for several values of O/x, where u,*(0, z)=
u,(0,2)/(—0,E/mKk). We see that u,(0, z) actually tends to
Egs. (44) and (54) in the limit of large O/x (dotted line) and

Fig.3 Profiles of the x component u,(x, z) and z component u.(x, z) of the
liquid velocity on a surface with a sinusoidal charge distribution
o(x)=0,{1+cos(Qx)} for O/k=0.2, where u,*(x, z)=u(x.z2)(—0,E/mK)
and u.*(x, 2)=u.(x,z)/(—0,E/nK)
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small O/k (dashed line), respectively. We also see that for
finite values of O/k, u,(0, z) exhibit a maximum in magnitude
at kz=2~3, which corresponds to z =1/Q. Figure 3 shows
u(x, z) and u,(x, z) as functions of x and z for Q/k=0.2.
Figures 2 and 3 show that u,(r) does not increase monotonously
as z increases. In the region near the surface z =~ 1/Q, u,(r) shows
a maximum in magnitude (i.e., an overshoot in distance). Far
from the surface z » 1/Q, however, u,(r) increases monotonously,
tending to the electroosmotic velocity U (Eq. (22)). In the region
near the surface, u,(r) alters periodically along the surface due to
the periodic surface charge distribution o(s). As a result of the
continuity equation for u(r) (i.e., divu(r)=0, Eq. (20)), the
change in u,(r) inevitably causes a change in the other compo-
nent of u(r) (that is, u.(r) in the present case) along the surface,
resulting non-zero values of u.(r). That is, u.(r) is larger for the
region where u,(r) is smaller and vice versa. The value of u.(x, z)
becomes a minimum, where u,(x, z) reaches a maximum. In-
deed, it follows from Egs. (51) and (53) that the phase difference
between u,(r) and u.(r) is 7/2. Far from the particle surface, u.(r)
vanishes.

(iii) A squared lattice of fixed point charges ¢ with a
spacing a

Now, we consider the discrete charge effect [30-36] on the
electroosmotic flow. We deal with a planar surface carrying a
squared lattice of point charges ¢ with spacing a (Fig. 4). The
point charges are thus located at lattice points s=(x, y)=(ma,
na), where m and n take both positive and negative integers.
The surface charge density o(s) is then expressed as

os)=q Y

—0< m,n< o

0(x—ma)d(y—na) (57)

2a

-a

&) ® | 4 @ &)

. ZaT © @

Fig. 4 Square lattice of fixed point charges ¢ with a spacing of a
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From Egs. (12) and (57), we have

ﬁ(k)zj Z §(x—ma)d(y—na)e*sds

—o< m,n< 0

=q Z exp(—i(kyma + kyna)) (58)

—0< [,m< o
By substituting Eq. (58) into Egs. (18) and (34)—(36), we have
the following expressions for (r) and u(r)=(u.(r), u,(r),

u(r)):

exp {—/{\/(x—ma)z + (yna)’* +22
\/(X*ma)2 + (y-na)® + 22

__ 4
2mEE,

e(r)

,0<z< o0

—o<lm<o

(59)

exp <—H\/(x—ma)2 + (y-na)* + zz>
\/(x*ma)2 + (y-na)’ + 2

Jo (k (x-ma)* + (rna)z)kdk}

415 B, (k (x-ma)* + (y*na)z) K*dk

27I-TLOO< m,n< oo V k2 + /422 + k

qE J * ze ke
0

(60)

_ —ma)* 242
g o exp( /{\/(x ma)” + (y—na) +z>
P D v \/(xfma)z-i- (—na)? + 22

qE 82 e esz (s - 5 5 "
+27r7/;<;2m;m<w% JO N 0< (x—ma)” + (y—na) )
(61)

u(r) =

4E 2 |ew (*n\/(rma)z + (y—na)? +z2>

- = v
2mnK 0z0x \/<x_ma)2 + (-na)?: + 22

—0< mn< 0

qE o J[” & 2 2

e Z i Jo| k\/ (x~ma)” + (v—na)” | kdk
0

—0< m,n< o

+ 4E Z 0 Jw e J (k (x-ma)* + (rna)2>kdk
= S L S— _
270 S O |y VR + K2k

(62)

u(r) =

where Jy(z) is the zeroth-order Bessel function of the first
kind.
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It can be shown that the electroosmotic velocity U is given
by

E
U= lim u(r) = (— q—z,o,o) (63)
Z—0 nKka

which is the same as that obtained by the smeared charge
model, as shown below. In the limit of ka—0, Egs. (60)~62)
tend to the results of the smeared charge model for a planar
surface carrying a uniform charge of density g/a?, viz,

qE
nra

u(r) = uy(x,3,z) = — (I—e™) (64)

wy(r) = 0,1(r) = 0 (65)

and the electroosmotic velocity is given by Eq. (63).Figure 5
shows the x component #,(0,0,z) of the liquid velocity on a
surface carrying a squared lattice of point charges ¢ with a
spacing a as a function of «z calculated at x=y=0 for several
values of ka, where 1,%(0,0,2)=1,(0,0,2)/(—gE/nra®). It can be
seen that as ka— 0, u,(0,0,z) actually tends to the results of the
smeared charge model (the dotted line). For large xa, howev-
er, the deviation of the results of the discrete charge effect
from those of the smeared charge model becomes appreciable
as in the case of other interfacial electric phenomena [30-36].
From Fig. 5, we see that, as in the case of a sinusoidally
charged surface, u(r) does not increase monotonously as z
increases. In the region near the surface z~a, u(r) shows a
maximum in magnitude (i.e., an overshoot in distance). This is
because u,(r) becomes larger at points closer to the fixed point
charges ¢. As a result of the continuity equation for u(r) (i.e.,
divu(r)=0, Eq. (20)), the change in u,(r) inevitably causes a
change in the other components of u(r), that is, u,(r) and u.(r).
Far from the surface z » a, however, u,(r) increases

u ¥(0,0,2)

12 | 20

0.8

0.6
Smeared-charge model (xka—0)

KZ

0 L L L L )
0 10 20 30 40 50

Fig. 5 The x component u,(0,0,z) of the liquid velocity on a surface
carrying a squared lattice of point charges ¢ with a spacing a as a
function of kz calculated at x=y=0 for several values of xa, where
1,%(0,0,2)=1,(0,0,2)/(—qE/nka®). The dotted line corresponds to the
smeared charge model cka—0

monotonously, tending to the electroosmotic velocity U
(Eq. (63)) and both of u,(r) and u.(r) vanish.

Conclusion

We have derived a general expression Eqs. (34)—(36) (or
Egs. (37)-(39)) for the velocity distribution u(r) on an arbi-
trarily charged planar surface in contact with an electrolyte
solution under an applied electric field E for the case where
the electric potential is low enough to allow linearization of
the Poisson-Boltzmann equation. As examples, the results for
a sinusoidal charge distribution (Eqgs. (50)~(53)) and a squared
lattice of point charges ¢ with a spacing a (Egs. (59)(62)) are
given.
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Detailed derivation of Eqs. (30)-(32)
Point: A set of the components of u(r) and yAr) satisfies the biharmonic equation A2F = 0.

Start with the Navier-Stokes equation for the liquid flow u(r):
nAu(r) — Vp(r) — pa(r)V¥(r) = 0 (19)

where the electric potential W(r) is given by the sum of the equilibrium double layer potential y(r) and the potential -Ex

of the applied external field E (£, 0, 0),
Y(@) =y(@r)—Ex (23)
Assume that y(r) obeys the linearized Poisson-Boltzmann equation:
Mp(r) = k*P(r) (6)
which gives
Y = 5 0P(r) = £ 22Y(r) 29)
The charge density pei(r), which is related to y(r) by Eq. (1), is given by, for the low potential case,
Pel(1) = —&r&oMP(T) = =&k P(T) ®)
By substituting Eqs. (3) and (23) into Eq. (19), we obtain
nAu(r) — Vp(r) + ..k Pp(r)V{Y(r) —Ex} =0 (19a)
which becomes
M) ~ V{p(r) 2 ok Y? ()] - etk BRI = 0 (24)
We take the rotation of Eq. (24) to eliminate the gradient term so that we obtain
NV X Au(r) — g.6,k2EV X {Y(r)Vx} =0 (25)
Since V X Vx = 0, Eq. (25) becomes
NV X Au(r) — g.6,k2EViP(r) X Vx = 0 (25a)
Taking the rotation again,
NV X V X Au(r) — g.6,k2EV X {Vi(r) X Vx} = 0 (25h)

Since Au=-VxVxu when Eq. (20) holds, Eq. (25b) becomes

V(1)
Ox

—nA%u(r) — ersosz{ - Az/)(r)Vx} =0 (25¢)

By substituting Eq. (29), Eq. (25¢) becomes

P v Vx} =0 (250)

—nA2u(r) — g5k °E {FV T 2

which is identical with Egs. (30)-(32) (note that Vx = (1, 0, 0)).



