理工情報生命学術院共通専門基盤科目

0AH0315 **生物環境工学特別講義** I (1 単位)

Please register (履修登録期間7月27日~8月24日)

講師 Prof. Jérôme F.L. DUVAL

https://elkin2019.mit.edu/duval/

CNRS Research Director at the National Center for Scientific Research (CNRS)

Date August 31, September 21, September 27, September 28

Time 14:30 – 18:00 (tentative)

On line Zoom Code will be announced after your register

コロイド界面の基礎と応用

- The basics of electric double layers at colloid/solution interfaces and the basics of interactions between hard colloids;
- The basics of electrokinetic phenomena (DC electrophoresis, streaming current, streaming potential), and the fundaments of the theories required for a proper interpretation of electrokinetic data collected on hard, soft particulate and planar surfaces (appreciation of the conditions that warrant adequate application of the theories);
- The origin of the 'unconventional response' of soft surfaces to applied electric fields and applied tangential flow;
- Be able to formulate a proper experimental plan for measurements of soft particle/surface electrokinetics;
- Basis of cell adhesion to surfaces and the useful (or not) information derived from electrokinetic studies;
- Metal transfer dynamics to biointerfaces, and the necessity to address electrokinetic properties of the involved colloidal interfaces;
- The dynamic complexation of metal ions by colloids and nanoparticles and the necessity to address electrokinetic properties of the involved colloidal interfaces.

COURSE DETAILS (15 HRS LECTURES IN TOTAL)

<u>PART I of the course</u>: Past and recent developments in the field of particle and surface electrokinetics with an emphasis on the differentiated electrokinetic behavior of hard and soft colloidal systems.

Lecture 1. Introduction to Electrokinetics of Colloids and Surfaces

- Introduction & short overview of the overall course content
- Basics of electric double layers (case of hard particles)
- Basics of particle interaction theory & application to colloid stability against aggregation
- Electrokinetics of hard interfaces: theory and illustrations

Lecture 2. Electrokinetics of soft (bio)interfaces

- On the applicability of the zeta-potential concept for soft (bio)interfaces
- Streaming-potential & streaming current of planar polymer-like interfaces: theory and concrete case studies (polymer thin films), Importance of surface conductivity phenomena
- Electrophoresis of porous particles and polymer-coated particles : theory and case studies (bacteria, viruses, hydrogel-like particles)
- The exciting case of charge-stratified soft interphases (polyelectrolyte multilayers, zwitterionic particulate interphases)

<u>PART II of the course</u>: Electrokinetics and (nano)particles reactivity in the contexts of cell adhesion to surfaces, dynamic complexation of metal ions by colloids and nanoparticles, and transfer of metal ions to and across biointerfaces.

Lecture 3. Electrokinetics as a tool for assessing bioadhesion capacity?

- Basics of cell adhesion to surfaces: nature of the interactions coming into play
- Quantifying the cell-surface interactions with use of electrokinetics : potentialities and limits
- Atomic Force Microscopies as nano-tools for addressing bioadhesion at the nanometric scale
- Case studies from recent literature

Lecture 4. Dynamic complexation of metal ions by colloids and nanoparticles

- Basics : Eigen mechanism, thermodynamic *versus* dynamic metal speciation approaches
- On the importance of electrokinetics for rationalizing charge effects in chemodynamics of metal-(nano)particle complexes:

- Chemodynamics of metallic complexes: concepts, theory and computational illustrations
- Case studies from recent literature

Lecture 5. Transfer dynamics of metal ions to and across biointerfaces

- Basics of reactive transfer of metals to biointerfaces: the importance of electrostatics as addressed by electrokinetics
- Modern aspects of theory on metal transfer dynamics to bio-cells: going beyond the thermodynamic paradigms (biotic ligand model)
- Case studies from recent literature

世話人 足立泰久 (adachi.yasuhisa.gu@u.tsukuba.ac.jp)

聴講のみ希望する場合は足立まで(氏名、所属)をメールで連絡をください。 資料と Zoom コードを送ります。